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Abstract. An approach to the theory of unstable bound states of electrons in the nuclear 
field is suggested. This approach permits the determination of unstable bound states when 
a quasistationary approximation is unjustified and, therefore, methods normally used for 
this purpose in the atomic theory cannot be applied. The equations employed in our 
approach make it possible, without resorting to perturbation theory, to determine the energy 
distribution of excited states, the shape of the natural broadening of spectral lines, the 
amplitudes of the resonance scattering of photons and electrons over atomic systems, and 
to describe spontaneous radiation and autoionisation decay. Calculated results are given 
of the shape of the natural broadening of spectral lines in a three-level atomic system when 
energy levels overlap. In the quasistationary approximation standard expressions of the 
relativistic atomic theory for level energy shifts and radiation widths follow from the 
equations. 

1. Introduction 

The quantum theory of unstable systems has been an object of intensive study for a 
number of years. A fairly comprehensive review of the extensive literature on the 
subject can be found in Fonda er a1 (1978). An important variety of unstable states 
is that of bound complexes, e.g. excited atomic and nuclear states. The description of 
atomic-system unstable states is based on the concept of their quasistationarity, which 
makes it possible to attribute certain complex energy values to these states. In the 
general case the decay law is fully determined by the setting of the unstable state vector 
I & ,  t )  at the moment of time t = 0 (Fock and Krylov 1948) 

c 

where Ipi, E )  is the eigenvector of the energy operator. In the case of atomic systems, 
given an unstable state at the moment of time t = 0, the attenuation theory (Heitler 
1954) permits an exact determination of the law of finite-state probability distribution. 
This theory, however, gives no exact determination of an excited state bound with a 
finite lifetime (Heitler 1954). Therefore, ‘unperturbed’ bound states are used as initial 
states (in this case perturbation is the interaction between the atomic system and the 
radiation field). This is justified, however, only in the quasistationary approximation. 
As concerns the basic difference between the determination of unstable excited states 
and that of the basic ground state, it should be noted that in the stationary state the 
system has a definite energy; hence the determination of the excited state is reduced 
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to the determination of the energy operator eigenvector. No definite energy can be 
related to unstable states, and for this reason they cannot be determined by equations 
for obtaining energy operator eigenvalues, except for quasistationary approximations, 
where a certain complex energy is attributed to the unstable state. In this case 
quasistationary states can also be determined by an equation in complex energy 
eigenvalues (the Schwinger equation). 

For the quasistationary approximation to hold for a certain state, it is necessary 
that the width of the corresponding energy level r should be small compared with the 
characteristic interval of the irregularities of the state’s decay. From this it follows 
that the distances between the energy levels of states with the same total moment 9, 
its projection on axis z and parity must be much greater than the width of these levels. 
However, in the case of multicharge ions the energy levels of certain states with identical 
9, bZ and parity can overlap. Thus, in the multicharge-ion case certain bound states 
cannot be regarded as quasistationary and for this reason, when describing such states, 
one should transcend the bounds of the quasistationary approach. 

Gainutdinov (1983) suggested an approach to a non-relativistic quantum theory of 
scattering, based on Feynman’s principle of amplitude superposition and the more 
general principles of relativistic quantum theory. This approach was further generalised 
(Gainutdinov 1987) to the case of the relativistic theory. It was shown by Gainutdinov 
(1986) that using this approach one could determine the unstable states of an electron 
in the nuclear field without resorting to the notion of their quasistationarity. Equations 
were obtained for the operator C ( z ) ,  determining the energy distribution of excited 
bound states, and for the operator M ( z ) ,  describing the emission and absorption of 
photons by hydrogen-like ions. In the present paper this approach is extended to the 
atomic-system case with an arbitrary number of electrons. 

2. T-matrix formalism 

2.1. Basic physical principles 

Feynman’s formulation of quantum mechanics (Feynman 1948, Feynman and Hibbs 
1965) is based on two principles. According to the principle of amplitude superposition 
the probability amplitude of each event is the sum of the probability amplitudes of 
different alternative realisations of that event. In Feynman’s formalism the use of this 
principle consists of the fact that the probability amplitude of particle transition from 
point X ,  , at the moment of time t l  , to point X , ,  at moment t 2 ,  is written as a sum of 
the contributions of classical movements over all possible trajectories. The second 
postulate of Feynman’s formalism is that the contribution of each trajectory to the 
amplitude is equal to exp(i/ h S , l [ x (  t ) ] )  where SZ1[x( t ) ]  is the classic action, calculated 
for the trajectory x ( t ) .  It was demonstrated by Gainutdinov (1983) that instead of 
Feynman’s second postulate, which has a rather artificial character, one can use, 
together with the amplitude superposition principle, the more general principles of 
relativistic quantum theory, constituting the so-called ‘zero’ axiom of the axiomatic 
field quantum theory (Streater and Wightman 1964). In Gainutdinov (1983, 1987) the 
use of Feynman’s superposition principle involved scattering amplitudes corresponding 
to certain temporal versions of the scattering process 

m 

( W ~ I S I P ~ ) = ( W ~ / ~ ~ ) + ~ - ~ ~ ~ ~  [ ~ h d t , ( ~ 2 1 & t 2 ,  r l ) l d  ( 2 )  
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where (q21S(t2, t,)Jcpl) determines the amplitude of probability that, whereas at t + -a 
the state of the system was lin, q l ) ,  the interaction of the system particles will occur 
within the time interval ( t l ,  f 2 )  and at t + cx the system will be determined in the state 
lout, q2). The first term on the right-hand side of (2) corresponds to the evolution 
variant in which the system particles do not interact at any time. Note that in the 
present paper we use a non-covariant version of the formalism. To explain the meaning 
of (2), we shall point out the following. In keeping with Feynman's approach, 
something may be represented in the form of an integral over all the classic trajectories, 
for which interaction begins at time t l  and ends at t z .  Obviously, in this case (2) 
coincides with the standard expression for a scattering amplitude in the shape of path 
integrals. 

2.2. T-matrix equation 

The principal object of our approach-the T matrix-is introduced as follows: 

(nzlT(z)inl)=i dTexp(izT)(nzlf(T)lnl) 

(3)  
lom 

( n z l f ( f 2 -  ~l)l~l>=exP(-i~,,~z)(~zl~(~z, t I ) l % )  exp(iEfl,t,). 
Here the vector In) describes the state of the system with the energy E,,  n denoting 
the entire set of discrete and continuous parameters which characterise this state. It 
was shown by Gainutdinov (1983, 1987) that the T matrix satisfies the following 
relationships: 

(nzl ~ ~ ~ l ~ l ~ I ~ - - ~ ~ Z l  T(z2)lnJ = ( Z Z - - Z I ) ( ~ Z l  ~ ~ Z Z ~ E O ( Z Z ) G O ( Z l ) T ( z l ) l ~ l )  (4) 

These equations were derived as off -shell generalisations of the relationships for 
the T matrix: 

(nzlT(Ef12)lnl)-(nzl +(Efll)lnl) = (Efll - ~ n z ) ( ~ z l T ( ~ f 1 2 ) G o ( ~ f 1 2 ) ~ o ( ~ f l , )  +(EflIh) (7)  
which follow directly from the unitarity conditions introduced by Gainutdinov (1983, 
1987) of the operators S (  f K )  and S(  tH) .  For example, the operator S (  f K )  is an operator 
whose matrix elements determine the probability that if no interaction was present in 
the system at t + -a and the system state was [in, c p )  and the system particles do not 
interact at the moment t, then the system will be found in the state It, +) at this moment 
of time. The operator S(tK) satisfies the unitarity condition 

+ s( f K ) S (  t K )  = 1. (8) 
In keeping with the superposition principle for (n21S( tK)I n,) the following expression 
can be written: 

( n 2 1 s ( f K ) l n l )  = ( n Z l n l ) + j '  -m dtZ I" -m dtl(nZlS"(fZ, tl)lnl) 
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Substituting this expression into the unitarity condition (8) one can see the validity of 
expression (6). It should be noted that, if relationships (4) and ( 5 )  are considered 
separately, it appears that their choice as off -shell continuations of relationships (4) 
and ( 5 )  is somewhat arbitrary. Taken as a set, however, they eliminate this arbitrariness. 
A proof of this assertion is given in the appendix since this question has not been 
discussed before. Note that this proof is important for the development of the approach 
in question and for the rigorous justification of its equations. 

Now, using (4) and ( 5 ) ,  it can be shown that if some boundary-value condition 
were set for T ( z )  then the equation 

could be used to determine this operator over the whole complex plane z. Using (3) 
it can be shown that 

T ( d -  T(z2) = (Z2-ZI)T(Z2)Go(Zz)Go(zt)T(zl) (10) 

(rial T (z ) ln , )  - (r12lBln1) (11) 
Z’IOO 

where (nzlBln,) can be interpreted as an interaction Hamiltonian. In fact, in keeping 
with the superposition principle (nrl f( 7)Inl) can be written in the form 

Here (nzlBln,)S( 7) describes a momentary interaction, (n,l f ’ (7) In l )  being the super- 
position of amplitudes, corresponding to the processes in which interaction lasts a 
finite time. Therefore, the amplitude (nZI f ’ (0) ln l )  is equal to zero. Hence, the uniform 
Fourier transform (3 )  for ( n21 ?’( T ) I  n,) at z -j io0 tends to zero. From this expression 
(1 1) obviously follows. 

(n2l f (T ) ln l )  = (n21BlnM7) + ( n 2 l f ’ ( 7 h ) .  

2.3. Physical meaning of the T-matrix equation 

Concerning the physical meaning of (10) it should be pointed out that in the case of 
non-relativistic potential scattering this relationship coincides in form with Hilbert’s 
identity for the T matrix of the standard non-relativistic quantum theory of scattering, 
based on Hamiltonian formalism. In this connection we note the following. In terms 
of non-relativistic quantum theory, based on Hamiltonian formalism, this relationship 
follows from the determination of the T matrix with the help of the energy operator 
resolvent. In our approach the T matrix has a different definition, expressing the 
principles of causality and superposition (3), while (lo),  following from the general 
physical principles, has an entirely new physical content, as compared with Hilbert’s 
identity. Then the interaction potential satisfies normal requirements of the Schrodinger 
theory, the Lippman-Schwinger (Gainutdinov 1983) and Schrodinger (Gainutdinov 
1984) equations follow from (10) and the boundary-value condition. The T matrix, 
determined by (3), proves to be equivalent to the T matrix of the standard potential 
theory. However, in the general case, (10) may be valid even when the Schrodinger 
equation does not hold true. For example, describing scattering at a certain potential 
we can use as initial information the value T ( z )  at arbitrary point z = a of the complex 
plane z rather than the potential operator V =  T(io0). Obviously, (q2 /T (a ) lq l )  as a 
function of the particle impulses q1 and qr can be chosen in such a way (Gainutdinov 
1983) that (10) with z2 = a will have a meaning and will permit both the calculation 
of T ( z )  at all physical z values and the determination of bound states (Gainutdinov 
1984), but no Lippman-Schwinger or Schrodinger equations will follow from it. In 
this case the T matrix bound with the S matrix cannot be determined with the help 
of the energy operator resolvent. Thus, the approach described in this paper permits 
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the consideration of models which have no analogues within the framework of Hamil- 
tonian formalism. 

3. Unstable bound states 

3.1. Determination of an ‘undressed’ bound state 

Let us consider the question of bound states of electrons in the nuclear field. We shall 
consider a system which contains a nucleus with a charge 2, electrons, positrons and 
photons. If the interaction with the radiation field is ignored, the T matrix on the 
negative real half-axis will have a number of poles corresponding to the principal one 
and to excited ionic states. However, owing to the fact that an electron in an excited 
state may radiate a photon while changing over into another state, all excited states 
prove to be unstable. What then is an unstable state in this case? Obviously, this is 
a bound state of the electrons with the nucleus which, in the absence of interaction 
of the electron with the radiation field, possesses all the properties of a stable particle. 
In the temporal translations t + t + a the vector describing this state will be transformed 
in the following way li, p ) +  exp[-i(E, + E , ) a ] / i ,  p ) .  Here p is the ion impulse and E, 
is the energy of the ith bound state. A question arises as to how to determine E, and 
li, p )  if, in contrast to the stable bound state, the T-matrix poles do not correspond to 
the given state. However, an operator can be determined whose poles will correspond 
to unstable bound states. As has already been pointed out, ( q 2 1 S ( f ) l q l )  is the superposi- 
tion of amplitudes corresponding of all alternative probabilities of the event described 
by the amplitude (q21S(t) lqI) .  One such possible process is that in which all the 
interaction within a system is confined to the Coulomb interaction of a certain electron 
with a nucleus. Let us determine the operator s K ( t )  as an operator whose matrix 
elements determine the amplitude of the probability that, if at t + --CO the system state 
is lin, q l )  and if all interaction in the system is confined to Coulomb interaction between 
the electrons and the nucleus and is over by the moment t, then at this moment t the 
system is found inJhe state It, q2). Obviously, the operator S , ( t )  must satisfy the 
unitarity condition zK( t)S’,( t )  = 1. 

The operators TK(7) and TK(z) are determined accordingly. Similarly to the 
derivation of (10) the following relationship can be derived: 

where M and m are the nuclear and electron mass, respectively, q ,  is the nuclear 
impulse, q2 is the electron impulse and 5 describes the nuclear and electron spin states. 
Obviously the boundary value for (qZlTK(Z)lpl) is the potential of the Coulomb 
interaction between the nucleus and an electron. A peculiarity of the operator TK(z) 
is the fact that it has poles corresponding not only to the ground state but also to the 
unstable excited bound states. Note that in their physical meaning the bound states 
I i, p )  are ‘undressed’ bound states. 



274 R K h  Gainutdinov 

3.2. Equation for bound states 

The fact that the operator T K ( z )  has poles corresponding to bound states makes it 
possible to derive from (12) an equation determining both the stable ground and 
unstable excited states. The following equation may be derived in the same way as 
the T-matrix equation for bound states (Gainutdinov 1984) 

where t,bi(k, 5) and Ei are the wavefunction and energies of the ith bound state, 
respectively. Equation (13) is virtually identical to the quasipotential Logunov- 
Tavkhelidze equation, describing a two-particle bound system (Logunov and Tav- 
khelidze 1963, Faustov 1970). So far we have considered bound states of one electron 
in the nuclear field, but one can also determine bound states of several electrons, 
interacting in the Coulomb manner with the nucleus and not interacting with one 
another. The vectors describing such states shall also be denoted I i, p ) .  In the non- 
relativistic approximations at a + ico, the Schrodinger stationary equation follows 
from (13). 

It should be pointed out that in the general case it is more convenient to redefine 
the states (i ,  p )  in such a way as to use Dirac’s equation for their calculation. For this 
purpose &(t,) should be redefined so that it could describe, apart from the above- 
mentioned processes, also the processes of birth of electron-positron pairs in the 
Coulomb nuclear field. 

3.3. Bound states and Coulomb interaction 

As concerns the fact that T K ( z )  describes a Coulomb interaction, which does not meet 
the requirements of the standard quantum scattering theory, note that the long-ranging 
character of Coulomb interaction does not contradict defining T K ( z )  with the help of 
(3). Furthermore, this operator must satisfy relationship (lo), which follows from 
fundamental physical principles. But at z2 + io3 the Lippman-Schwinger equation no 
longer follows from this relationship, since the Coulomb potential is not ‘good’ enough 
for this. In this case the boundary-value condition (11 )  does not seem to permit the 
introduction of all the data necessary for the determination of the T matrix with the 
help of (10). On the other hand, the stationary Schrodinger equation follows from 
(13) and from the boundary-value condition (1 l ) ,  allowing for the precise determination 
of the state vectors / i ,p ) ,  i.e. we obtain exactly what we need in this particular case. 
As to the description of scattering in the Coulomb interaction case, our approach may 
view it from a new standpoint. This question, however, has not yet been investigated. 

Note also that the states li, p )  coincide with the eigenstates of the Hamiltonian %,, 
when XI in the expression 

x= x,+ x, 
describes the interaction between the electrons and the radiation field and among 
themselves. Here %’ is the complete Hamiltonian of the system. Formally, ‘undressed’ 
bound states could be thus defined, but then we would have to employ a rather artificial 
notion of turning off the interaction described by the Hamiltonian %, . 
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4. The dynamics of unstable bound complexes 

4.1. Equations describing the dynamics of unstable bound complexes 

The bound states determined above are ‘undressed’ bound states. In order to determine 
the propperties of real ‘dressed’ bound states, let us consider the interaction of the 
‘undressed’ bound complexes with a vacuum. For this purpose let us in the first place 
redefine the notion of free states and consider the states described by the vectors li, p )  
to be free, although in this case the particles constituting an ion certainly interact. 
Accordingly, the notion of interaction in a system is also redefined. To describe such 
‘free’ states the Hilbert space 

%R= %@%U 

is introduced, where %’ is the Hilbert space whose elements describe the free states of 
the nucleus, electrons, positrons and photons, Xu is the space whose elements describe 
the states containing, together with the atomic system, electrons, positrons and photons. 
Not that the operators S( t )  and T (  z )  were determined in the space X In the space 
X R  the operation & ( t )  and the corresponding operator T R ( z )  may be determined in 
a similar manner. This operator satisfies the following relationship, which is the 
generalisation of (IO) for this space: 

Here the Im) form an orthonormal basis in X, and n denotes a set of discrete and 
continuous parameters, fully determining the states of the electrons, positrons and 
photons. Note that (14) includes the matrix elements ( i ,  p21 TR(z)I i, pl). Since the 
intermediate single-particle unstable states are in the continuous spectrum region, the 
nucleus of (14) is basically singular at physical z values. Therefore, one should go 
from (14) to another equation following from it. For this purpose let us rewrite (14) 
in the form 

From this it follows that the matrix elements ( i ,  p 2 ,  n21G( z)l i, p l ,  n l )  describe the system 
evolution when interaction in the system is reduced to the interaction of the bound 
complex with a vacuum. The matrix elements (m21G(z) lml)  describe the system 
evolution when interaction in the system is reduced to the Coulomb interaction between 
the electrons and positrons and the nucleus, and for this reason coincides with the 
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corresponding matrix elements of the ‘free’ propagator in the Furry representation. 
The operator F ( z )  can be represented in the form 

F ( z ) =  G ( z ) +  G(z)M(z)G(z) .  

It follows from (15) that G(z)  satisfies the equation 

(i, P2I{G(Zl) - G(Z2) - (z2 - z1) 

x [G(z2)G(z1)+ G(ZZ)M(Z~)G(ZZ)G(~~)M(Z~)G(Z~)I}~~,P~) =O. 

In the general case G ( z )  can be represented in the following form: 

=(i,P2lBli,Pl) (23) 

where H1 can be interpreted as the Hamiltonian of the electromagnetic interaction in 
the system, while (i, p2/B/ i, pl) describes an instantaneous interaction of an ion with a 
vacuum. To calculate the matrix elements of the interaction Hamiltonian, the wavefunc- 
tions of bound states should be determined in the first place. For this purpose one 
can use (13). If the nucleus is viewed as the scattering centre, one can use the Dirac 
equation for the determination of the wavefunctions and Ei. The values of (i, p2/Bli, p , )  
are fully determined by the boundary value of the operator C(z)  describing interaction 
of the free electron with a vacuum. At the same time, as will be shown below, one 
can do without the determination of ( i ,  p2JBli, pl)  in the approximate solution of (20) 
and (21). 
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4.2. Physical meaning of the operators M(z)  and C(z) 

Let us now consider the questions concerning the physical meaning of the operators 
C ( z )  and M ( z )  and with the methods of solving (20) and (21). We shall view the 
nucleus as the scattering centre and the vectors describing the ion states will be 
designated I i). The matrix elements ( i /  C (  z)l i) will be designated C,( z ) .  

The matrix element C , ( z )  corresponding to the ion ground state determines the 
radiation shift of the lower level. If IIm C,(E,)I is much less than the distance between 
this level and the closest level with the same 2, $jz and parity, ‘then the energy distribution 
of the corresponding excited state can be described by means of two-parameter 
representation. In this case Re C, (E , )  and -1m C , ( z )  can be interpreted as radiation 
shift and excited-level shift respectively. In the more general case no specific energy 
(not even a complex one) can be assigned to excited states and for this reason these 
states must be characterised by energy distributions, which define C , ( z )  as functions 
of z. 

Let us consider ways of solving (20) and (21). In our first approach of the 
perturbation theory for M (  z )  we get 

M‘( z )  = HI. 

Substituting M ‘ ( z )  into (20) and taking into account the fact that G ( z )  coincides with 
G;(z) in a zero approximation for the interaction constant in the Furry representation, 
for C ( z )  to the second order, we get 

c12)(2,)- Ci2’(Z2) = d , ( z l ) - d , ( z ~ )  (24) 

RI( z )  = ( ilHl G;(z)H,I i) - (OIH, G;( z - E,)H,IO). (25) 

The presence of the second term on the right-hand side of (25) is due to the fact that 
C , ( z )  describes the interaction of an ion with the vacuum and, therefore, it cannot be 
due to the vacuum-vacuum transitions, which should formally be accounted for in the 
first term of the right-hand side of (25). Letting z2 tend to io0 in (24), we obtain for 
Cj2’(E,)  in the case of a single-electron bound state 

c ~ ~ ’ ( E , )  = d l ( ~ , )  - lim ( d l ( z ) -  C ! ~ ) ( Z ) ) .  (26 )  
2-100 

This expression can be rewritten in the form 

Ci2’ (E , )=  - i m  

B, = lim ( di( z )  - C,( z ) )  

d( t2- t l )  d3x2d3x1 & , ( x 2 ) y p  S ~ ( X ~ , X ~ ) ~ ~ ~ ~ ( X ~ ) ~ ~ ( X ~ - X ~ ) - B ~  I 
Z-lm 

where 9 F ( x 2  - x,) and S‘,(x2, xl) are, respectively, the photon and electron propagators 
in the Coulomb nuclear field and $,(x) is the Dirac wavefunction of the ith bound 
state in the coordinate representation. Equation (27) coincides with the normal 
expression for the radiation energy shift of quantum electrodynamics (Morh 1974) if 
B, is interpreted as a counter term of renormalisation. Therefore, to calculate Cj2’( E , )  
one can use standard methods and the values obtained can subsequently be used as 
boundary-value conditions in (24), which enables one to obtain Cl”(z) at any z value. 
For bound states containing more than one electron, C:”( E , )  apart from the self-energy 
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terms, contains members describing interaction between the electrons due to one- 
photon exchange. This results from the fact that in this case &( E i )  contains the terms 
describing the instantaneous Coulomb interaction between the electrons. 

5. Spontaneous atomic system radiation 

5.1. Non-perturbative methods of solution 

First of all we would like to note that (20) and (21) make it possible to derive C,(z) 
and M (  z )  without resorting to perturbation theory. An approximate solution of these 
equations may be obtained in the manner of Tamm-Dankov, cutting off the series over 
the number of particles in an infinite set of equations with a subsequent exact solution 
of this approximate set. For instance, if we confine ourselves to the accuracy of the 
order of a2 ,  then in (20)  and (21) the intermediate states containing more than one 
photon may be neglected. When the nuclear charge is sufficiently large, the autoionisa- 
tion decay may also be neglected. For simplicity we shall also consider as intermediate 
states only the bound electron states and neglect the possibility of the appearance of 
electron-positron pairs. In this case (20) and (21) will no longer describe the energy 
level shift owing to the vacuum polarisation. Therefore, when going over to the 
simplified set, one must redefine E, and include in them the energy shifts due to the 
vacuum polarisation which can be calculated using standard methods. Besides, E, 
may include corrections allowing for the finite dimensions of the nucleus. It can be 
seen that within the framework of this model ( j ;  k 2 ,  eA2lM(z)1i; k l ,  and 
( j l M ( z ) l i )  ( j t s  i )  which are solutions of (21) may be written in the form 

where k and are the photon impulse and polarisation vectors, respectively. It should 
be noted that (28) is the generalisation of the Breit-Wigner formula for the photon 
resonance scattering amplitude of the bound electron. Substituting (28) and (29) in 
(21) we obtain within the framework of this model the following equation for 
Mj:’(z, k, & A ) :  

Mr)(zl? k l ,  & A l ) - M r ) ( z 2 ,  k l ,  & A I )  

where G , ( z )  = ( n l G ( z ) / n ) .  
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Similarly an equation may be written for ML:’(z, k, eh) .  These equations together 
with the equation 

r 

-( i l  G( z 2 )  I j ;  k, & A  ) ( j ;  k, & A  I G ( z l )  I i))] (31) 

where ci( z )  = Ci( z )  - (iJ C”’( z)l i ) ,  form a closed set of difference equations, which 
allows the determination of M r ’ ( z ,  k, E ~ ) ,  M i T ) ( z ,  k, E,,)  and C i ( z ) .  The following 
boundary-value condition must be used together with (22) for this model: 

6 , ( z )  - 0. 
z-iw 

Hence, it follows that at large Im z values the perturbation theory in the solution of 
(20) and (21) proves to be also valid, and for sufficiently large Im z values, with an 
accuracy of 02 ,  the function C i ( z )  equals C i 2 ’ ( z ) .  It is from this that the boundary-value 
condition (32) follows. , 

It should be noted that the reason for writing (31 )  for e i ( z )  rather than for C , ( z )  
is the fact that only in this case can we neglect the intermediate states containing 
electron-positron pairs and use the boundary-value condition (32). In fact, (31) 
describes the low-energy resonance part C( z ) ,  while the high-energy relativistic contri- 
bution with a given accuracy is defined by C j 2 ’ ( z ) .  

5.2. Shape of a spontaneous radiation spectral line 

As a result of interaction with vacuum the energy levels of bound states are ‘spread 
out’, which is expressed by the fact that the Green function ( i l G ( z ) l i )  of the ‘dressed’ 
bound state differs from ( i l G o ( z ) l i )  in E, being replaced by E,+ C , ( z ) .  Therefore, 
instead of the poles, I ( i l G ( z ) l i ) l ,  corresponding to the excited states, have resonance 
maxima at z, determining the energy-level centres. The energy levels themselves may 
be defined as z, environments, in which ( i l G ( z ) l i )  have resonance behaviour. Note 
that ( i l G ( z ) l i )  together with the apical functions M::’(z, k, E ~ )  and M:; ’ (z ,  k, E,,) 
provide all information on bound states, both stable and unstable. For example, they 
define the forms of spontaneous radiation spectral lines and their relative intensities. 
In order to show this, let us write an expression for the amplitude corresponding to 
a process during which an atomic system, as a result of interaction with a certain 
particle, becomes excited, passing from the ground state to the ith excited one, after 
which it emits a photon, passing into the ground state 11) 

Here Ip) describes the state of the particle which interacts with the atomic system. In 
keeping with the superposition principle the S matrix, corresponding to interaction 
between the atomic system and the exciting particle, may be written in the form 

( ( ~ 2 1  SI CP 1 ) = ( (021 si I C P ~ )  + ((~21 si I CP 1 ) (34) 
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where si describes all the processes during which at no moment of time is the atomic 
system in the ith bound state. It follows from (33) and (34) that the photon birth 
amplitude will have a resonance maximum at the photon energy value close to E j  - El .  
Note that in (33) the S-matrix element is already ‘renormalised’ and E ,  includes a 
radiation correction. When the width of this resonance is less than the characteristic 
interval of variations in the interaction of the atomic system with the exciting particle, 
then ( i ;p’ lM(z)l l ,p)  in (33) may be considered independent of z. In this case, one 
can write the following for the probability of a photon with an energy w being emitted 
as a result of the system transition from the ith state into ground state: 

where d is the normalising constant. When the profile width is small enough, 
M(t:)(z, k, E * )  and C,(z) can be also considered independent of z, and a normal 
Lorentzian radiation profile will be obtained. Re C , ( E , )  defines the shift and Im C,(E, )  
the spectral linewidth. But in the general case, when the quasistationary approximation 
is unjustified, the shape of a spontaneous radiation spectral line. according to (35), 
may differ significantly from the Lorentzian one and is determined in the resonance 
region by the dependence of Mj:’(z, k, and C,(z) on z. As for the necessity to 
transcend the quasisationary approximation and perturbation theory, it appears when 
the energy levels with an identical set of quantum numbers overlap. This follows from 
the fact that according to (21) and (31) Mj?)(z, k, E , + )  and C,(z) have resonance 
behaviour at z corresponding to the centres of neighbouring levels with an identical 
set of quantum numbers. 

To investigate the dependence of the spontaneous radiation of atomic systems on 
the overlapping of energy levels with the same set of quantum numbers, we carried 
out (Gainutdinov and Salakhov 1987) a numerical solution of (30) and (31) for the 
model three-level system with a Hamiltonian 

(1, k, &A [HI/ i) = - i l ( 2 ~ ) - ~ ” k & ,  (k)( 11 71 i)f( w ) 

f ( w ) = l  at w < k o  f ( w )  = ki/w2 at w 2 ko 

Here (1, k, IH1/ i) describe transitions between two excited states, with the same 
quantum numbers, and the ground state. The following values were used as initial 
information: 

i = 2 , 3  
(36) 

w = /kl. 

Re Cj2’(Ei) being included in the E ,  and E,  excited-level energies. The solution of 
(30) and (31) was carried out in non-dimensional units (c  = h = 1, cy = 1/137, E ,  = 
0, E 2 =  100, E3 = E 2 + A E Z 3 ,  I(117li)l =O.OOl) .  The value of AE,, was varied in the units 
r2 : = pr,. A material difference of d Wj(w)/dw profile shapes from the Lorentzian 
one was observed at p s 3. In this case one must go beyond not only the quasistationary 
approximation but also beyond perturbation theory. Figure 1 shows the variation of 
d Wi(w)/dw profile shapes depending on the parameter p when ko= 101. 

Note that shape of a natural spectral line broadening in the case of overlapping 
energy levels was also investigated in the theory of the adiabatic S matrix (Labazovsky 
1983, Labazovsky and Sultanaev 1986). To investigate the decay of unstable bound 
states in the adiabatic theory as well as in Heitler’s theory ‘unperturbed’ bound states 
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Figure 1. The dependence of profile shapes during the variation of level overlapping for 
( a )  p = 2.0 and ( b )  p = 1.5. Curves A and A' are Lorentzian profiles; curves B and B' are 
computed profiles at k,= 101. 

are used as initial states 
in the case when the overlapping is not strong. 

r = 0). Therefore, the results of this theory are valid only 

5.3. Ultraviolet divergences and their elimination 

The most serious difficulty that has to be overcome in using this formalism is caused 
by the ultraviolet divergences. In terms of the relativistic theory of atoms in calculating 
by perturbation theory the problem of divergence elimination is solved for each 
order of perturbation theory. In the non-perturbative solution of equations (20) 
and (21) the problem of ultraviolet divergences has to be solved for each approximation 
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individually. Let us consider, e.g., an approximation to which equations (30) and (31) 
correspond. These equations contain no divergences. This is due to the fact that 
(30) makes no allowance for intermediate states containing free electrons, and equation 
(31) is written for e i (z ) .  We encounter ultraviolet divergences only when calculating 
Cj2)(z). One method of overcoming this difficulty has already been mentioned. One 
may ignore the dependences of Cj2'(z) on z and use the value Ci2' (Ei ) ,  which can be 
calculated by standard methods. However, Cj2'( z) can be determined more precisely. 
One can write 

c j2 ' (z)  = Cg/(z)+(iJE(2)(z)li)  

where 
electrons and positrons. This operator satisfies the equation 

z) is self-energy operator (in second-order perturbation theory) of the free 

Using this relationship, (24) may be rewritten in the form 

Cgjyz]) - CkZi)(z2) 

(37) 
This equation no longer contains any divergences and C!2)(Ef) may be used as a 
boundary-value condition at z = E , .  It remains to determine (i/E(2)(z)li). The standard 
methods of quantum electrodynamics determine (i1E'2)(z)li) only at z = E, .  Thus for 
a one-electron state we get 

( i l E ( 2 ' ( E i ) l i ) = i  @i(P)zR(P)pf(P) d3p 

where p,(p) is the bound-state wavefunction in impulse space and CR(p) is the 
regularised part of the self-energy operator. Note that in a more exact approximation, 
when equation (20) allows for states containing free electrons, this equation will contain 
ultraviolet divergences. These divergences may be eliminated by the above method. 
One can make sure of this if it is borne in mind that a solution of equation (20) 
( i lM(z) /p)  may be sought in the following form: 

( i I ~ ( z ) I p )  = C (iIG(z)Ij)(j tHIIv) Ip)E %R* 
J 

Substituting this expression into (20), one can obtain an equation for a (il$(z)lj). 
the divergences in this equation, just as in equation (31), are due to the expression 

(iI H1 GOF( z2) GOF(zl) HI I j )  
that it incorporates. 

6. Conclusion 

Now let us summarise. Unstable bound states are defined as follows. The concept of 
'undressed' bound states of electrons in a nuclear field is introduced. These states are 
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determined by the position and deduction of the poles of the (qZISKIq)  matrix corre- 
sponding to the alternative variant of electron scattering in the nucleus, during which 
the electrons interact with the nucleus only and do not interact with one another or 
with their own radiation field. Thus defined ‘undressed’ states prove to be equivalent 
to the stationary states defined by the Dirac and Schrodinger equations, with an 
interaction Hamiltonian describing only the interaction between electrons and the 
nucleus. In order to determine ‘dressed’ bound complexes, the interaction between 
‘undressed’ bound complexes and a vacuum is considered. Equations have been 
obtained enabling the determination of the operator C( z ) ,  characterising the energy 
distributions of unstable bound states, and of the operator M ( z ) ,  describing spon- 
taneous radiation, the autoionisation decay of unstable states and various collision 
processes. 

Equations (20) and (21) are a generalisation of the normal equations of the Green 
function method. Indeed, from (19) it follows that 

(iI G( z ) l i )  = (iI Go(z)l i )  + (il Go( z )C(z )G(z ) l i ) .  (38) 

In the case of a one-electron atomic system this coincides with Dyson’s equation, 
whereas in the two-electron case it coincides with the Bethe-Salpeter equation for 
Green functions. These equations make possible the determination of Green function 
of an atomic system when the mass operator can be calculated with the help of the 
perturbation theory, e.g. by formula (27). When the energy levels overlap, the apical 
functions M y ’ ( z ,  k, E ~ ) ,  in keeping with (30), have resonance maxima at z, correspond- 
ing to the neighbouring levels. In this case M ~ ) ( z ,  k, E ~ )  and accordingly C:”(z) 
cannot be determined with the help of the perturbation theory, and the Dyson and 
Bethe-Salpeter equations, unlike (20) and (21), are unclosed. 

In this approach both unstable and stable bound states are considered from the 
same point of view. The difference between them is reduced to the fact that the 
propagator of the ‘dressed’ ground state ( l / G ( z ) l l )  has a pole in the physical field. 
The operators G ( z )  and M ( z )  describing unstable bound states provide the same 
information as vector (1). In fact the Green function of state (1) may be written as 

Thus, knowing G( z )  one can determine the density of the energy distribution wi( E )  = 
a ? ( E ) a , ( E ) ,  the data on E )  being contained in the apical functions M‘,+’(z, k, E * ) .  

In a quasistationary limit, when Im C, ( z )  = - r i / 2  can be set for the energy distribution 
density, we get 

As for the application of this approach, it is in the first place a multicharge-ion theory. 
For example, it can be used to determine the exact shape of the natural widening of 
the spectral lines corresponding to the doubly excited states of ions with very large 
charges (in this case the energy levels with the same 2, $z and parity may overlap). 

Note in this connection the great importance of theoretical and experimental 
investigations of doubly excited states of heavy multicharge ions. Interaction of atomic 
systems in these states with a vacuum may be strong. Therefore, the data on the shape 
of the spectral lines corresponding to transitions from these states may contain informa- 
tion on unperturbed quantum electrodynamic effects. 
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This approach may also be used for the investigation of the autoionisation states 
of atoms. Besides, it enables one to calculate the amplitudes of resonance scattering 
of photons in bound electrons (28) when the Breit-Wigner formula cannot be used 
and one must go beyond perturbation theory. This situation may arise in the case of 
the autoionisation states of ions with a small charge and in the case of ions with a 
very large charge, when overlapping of energy levels with an identical set of principal 
quantum numbers takes place. It should be noted that when the quasistationary 
condition is fulfilled, equations (20) and (21) appear to be non-competitive in com- 
parison with the standard methods and yield the same results. 

One may hope that this approach could be used in the investigation of vacuum 
restructuring in the vicinity of nuclei with a supercritical charge ( z  > 170), but it is not 
clear what difficulties may arise in the process. 
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Appendix 

Similarly, proceeding from (7),  it can be shown that the relationship 

G O ( Z I ) T ( Z I ) & ( Z ~ ,  z ~ ) - ~ ( z I ,  ~ 2 )  T ( z 2 ) G o ( z 2 )  

+ +  

- - G O ( Z I ) 7 - ( Z l ) ~ ( ~ 2 ,  Z I )  % z 2 ) 6 0 ( z z )  = o  (A21 

4 ( Z I ,  z 2 ) - A 1 ( z 2 ,  z , ) = d 2 ( z 1 ,  z 2 ) - 2 z ( z 2 ,  z l ) =  & z 2 ,  z 1 )  

is also valid. In relationships ( A l )  and (A2) d , ( z , ,  z2) and .QQ,(z,, z2) are the arbitrary 
operators, satisfying the conditions 

(A31 

(n21dl(Efl,, z)lnl) = (n21G~(En,)lnl) (A41 

(n21&2( En,, z 1 I 1) = ( n2l  Go( EflJ I n 1). ('45) 

d I ( Z 2 ,  Z I )  = 4 z 2 ,  Z I )  = G O ( Z 2 ) .  

However, it follows from the compatibility condition of ( A l )  and (A2) that 

(A6) 

In order to demonstrate this, let us assume that interaction in the system is weak 
enough and T(z) can be expanded into a series of terms of the interaction constant 

T~ ( Z, A ) =  AB^ ( Z )  + A 2 ~ 2 (  Z )  + . . . + A "B,  ( Z )  + . . . . (A7) 

Substituting (A7) into ( A l )  and (A2) to first order in terms of A we get 
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